
TRAJECTORY GENERATION AND CONTROL FOR
QUADROTOR GRASPING AND PERCHING

JUSTIN THOMAS
GRASP Lab

Department of Mechanical Engineering and Applied Mechanics
University of Pennsylvania

Philadelphia, PA 19104
jut@seas.upenn.edu

ADVISOR: DR. VIJAY KUMAR

PH.D. QUALIFYING EXAMINATION

COMMITTEE

Dr. Vijay Kumar
Advisor

Dr. Katherine Kuchenbecker
Committee Chair

Dr. George Pappas
Math Examiner

May 17, 2012

1

Trajectory Generation and Control for Quadrotor
Grasping and Perching

Justin Thomas

Abstract—When quadrotors are placed in real world environ-
ments, it will be desirable to perch or land as well as grasp
objects reliably and in a timely manner. This paper explores and
demonstrates a variety of methods that can be used for such
planning and control. The differential flatness of a quadrotor
is leveraged to enable planning in a simplified state space,
which allows for algebraic and numerical methods for generating
optimal trajectories. Additionally, three different controllers,
including a non-linear controller on SE(3), will be discussed.
The results of simulated controllers and real trajectories are
presented.

I. INTRODUCTION

From construction [1] to aerobatics [2], recent years have
seen much improvement in the capabilities of Unmanned
Aerial Vehicles (UAVs) [3]. Other than [4] and [5], how-
ever, there has been a lack of coverage regarding perching
and grasping for quadrotors. These capabilities are closely
related and can improve the usefulness of UAVs by enabling
time and energy efficient interaction with the environment.
For example, perching could be used to improve mission
duration by reducing required flight time, it could be a way
to safely outlast high winds, or it could allow for quick
silence in stealth operations. Grasping enables manipulation
of the environment and would facilitate the acquisition and
transportation of objects. Overlapping both of these concepts
is trajectory planning and the precise control necessary for
quick and accurate tracking of a target object or location. The
results presented in this paper utilized the GRASP Multiple
Micro UAV Testbed [6] and leverage a motion capture system
to accurately determine the state of the quadrotor [7].

II. QUADROTOR BACKGROUND

A. Dynamics

The quadrotor considered is produced by Ascending Tech-
nologies [8]. It is an unmanned micro aerial vehicle that has
four coplanar rotors perpendicularly located a distance l ∈ R
from the body center. One pair of counter-rotating propellers
are used so that the net yaw moment is approximately zero at
hover. The inertial frame, A, with basis {a1,a2,a3} ∈ R3 and
the body frame of the robot, B, with basis {b1,b2,b3} ∈ R3

are defined with their third axes pointed upwards as depicted
in Figure 2. The rotor speeds, ωi ∈ R, are regulated to control
the net thrust, u1 ∈ R, along the b3 axis and moments
u2 ∈ R, u3 ∈ R, and u4 ∈ R about the b1, b2, and b3

axes, respectively. The force, Fi ∈ R, and moment, Mi ∈ R,
produced by each rotor is approximately related to the rotor

Fig. 1. Quadrotor, Gripper, and Grasped Object

speeds using kf ∈ R and km ∈ R in the following equations

Fi = kfω
2
i (1)

Mi = ±kmω2
i (2)

where the sign of km is based on the direction of rotation of
the rotor. These relationships are used in [6] and [9], which are
consistent with [10] for hover and vertical flight conditions.

The control inputs of the system are

u =
[
u1 u2 u3 u4

]T ∈ R4

and the rotor speeds are related to the control inputs through
the following relationship

u1

u2

u3

u4

 =


kf kf kf kf
0 lkf 0 −lkf
−lkf 0 lkf 0
km −km km −km



ω2

1

ω2
2

ω2
3

ω2
4

 . (3)

An inertia tensor, J ∈ R3×3, and mass, m ∈ R, are
used to model the robot’s dynamics. Defining r ∈ R3 as the
position in A, gravity by g ∈ R, and e3 =

[
0 0 1

]T
, the

translational dynamics are given by

mr̈ = u1Re3 −mga3 (4)

where R ∈ SO(3) and rotates vectors from the body frame to
the world frame.

The angular velocity vector of the body frame, B, in the
world frame, A, expressed in the body frame coordinates
is ΩB B ∈ R3 where the post-superscript indicates the frame
of interest and the preceding superscript indicates the frame

2

a1

a2

c1

c2

a3, c3

b1

b2

b3

r

Fig. 2. Coordinate Systems

in which the coordinates are expressed. Then, the angular
dynamics are

J Ω̇
B B

=

 u2

u3

u4

− ΩB B × J ΩB B. (5)

We will define the state vector, q ∈ R12, as

q =


r
ṙ
γ

ΩB B

 (6)

where γ =
[
φ θ ψ

]T ∈ R3 and the components are roll,
pitch, and yaw, respectively.

B. Differential Flatness

From the previous section, we have seen that the state
space of a quadrotor is 12 dimensional consisting of the three
components of r and their first derivatives, as well as the
three components of angular orientation and their derivatives.
Planning in this state space is a daunting task and so we seek
a simpler space.

Initiated by [11] and further developed in [12], the commu-
nity has utilized differential flatness to simplify the configura-
tion space of the quadrotor. This concept has been specifically
promoted in [13] and [9].

A system is differentially flat if there exists a change of
coordinates which allows the state, q, and control inputs,
u, to be written as functions of the flat outputs and their
derivatives (yi, ẏi, ÿi, ...) [12]. Additionally, we require that
the flat outputs are functions of the state and the control inputs
[12]. If the change of coordinates is a diffeomorphism, we can
plan using the flat outputs and their derivatives.

1) Change of Coordinates: This section will show that the
flat outputs of the quadrotor consist of r and the angular
rotation, ψ ∈ R, about a3. The flat outputs, y ∈ R4, are
defined

y =

[
r
ψ

]
. (7)

A simpler approach, which assumed instantaneous attitude
control, was explained in [13]. Our approach, however, is
similar to [9] and assumes that the rotors can instantaneously
change their speed.

First, r and ṙ of the state vector are trivially populated with
y1, y2, y3, ẏ1, ẏ2, and ẏ3. This leaves γ and ΩB B as unknowns.

Solving (4) for Re3, the body frame axis b3 in A, we obtain
m

u1
(r̈ + ga3) = Re3 (8)

where Re3 = b3.
Since u1 and m are scalars that do not affect the direction

of b3, we simply have

b3 =
r̈ + ga3

‖r̈ + ga3‖
(9)

and
u1 = m ‖r̈ + ga3‖ (10)

where we require that ‖r̈ + ga3‖ > 0.
Next, we wish to determine the other body frame axes. Since

we know the yaw, y4, we can define an intermediate coordinate
frame, C, with the vectors

c1 =

 cos y4

sin y4

0

 , c2 =

 − sin y4

cos y4

0

 , c3 =

 0
0
1

 .
Then, c2×b3 generates a vector which is in the same direction
as b1. Assuming that b3 6= c2,

b1 =
c2 × b3

‖c2 × b3‖
(11)

Finally, b2 is simply

b2 = b3 × b1. (12)

Noticing that R ∈ SO(3) is simply a change of coordinates,
we can write

R =
[

b1 b2 b3

]
(13)

from which we can determine φ and θ, or q7, and q8 using
the fact that R can also be defined using a Z-Y-X rotation

R =

 cθcψ cψsθsφ− cφsψ cφcψsθ + sφsψ
cθsψ cφcψ + sθsφsψ −cψsφ+ cφsθsψ
−sθ cθsφ cθcφ

 (14)

where s and c denote sin and cos, respectively.
Next, we seek ΩB B. Taking the first derivative of (4) with

respect to time, we obtain

m
...
r = u̇1b3 + ΩA B × u1b3 (15)

where ΩA B is the angular velocity of the body in the inertial
frame coordinates. Noticing that u̇1 is only multiplied by b3,
we can solve for u̇1 by projecting (15) onto b3

b3 ·m
...
r = b3 · u̇1b3 + b3 · ΩA B × u1b3.

Since b3 ⊥
(

ΩA B × u1b3

)
, the last term vanishes giving

u̇1 = b3 ·m
...
r . (16)

Substituting (16) into (15),

m
...
r = (b3 ·m

...
r) b3 + ΩA B × u1b3

3

proj[ΩB B]

ΩA B × b3

b1

b2

Fig. 3. Geometry of the relationship between proj
[

ΩB B] and ΩA B ×b3

in the b1-b2 plane

we notice that (b3 ·m
...
r) b3 is simply the component of m

...
r

along b3. Simplifying,

ΩA B × b3 =
m

u1
(
...
r − (b3 ·

...
r) b3) (17)

so that (
...
r − (b3 ·

...
r) b3) and ΩA B×b3 lie in the b1-b2 plane.

Since∣∣∣ ΩA B × b3

∣∣∣ =
∣∣∣ ΩA B

∣∣∣ |b3| sin η =
∣∣∣ ΩA B

∣∣∣ sin η
where η is the angle between ΩA B and b3, we see that∣∣∣ ΩA B × b3

∣∣∣ =
∣∣∣proj [ΩB B

]∣∣∣
where proj

[
ΩB B
]

is ΩB B projected onto the b1-b2 plane.
Additionally, the vectors are perpendicular as a result of the
cross product. From Figure 3, we see that

ΩB B
1 = −b2 ·

(
m

u1
(
...
r − (b3 ·

...
r) b3)

)
(18)

ΩB B
2 = b1 ·

(
m

u1
(
...
r − (b3 ·

...
r) b3)

)
. (19)

The last component of ΩB B can be found using the relation-
ship that the body frame components of angular velocity can
be expressed in terms of Euler angles. Using (14), we can
determine the body frame angular velocity according to [14]
to be

ΩB B =
(
RT (t)Ṙ(t)

)∨
where ·∨ : so(3)→ R3. This provides

ΩB B =

 1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ

 φ̇

θ̇

ψ̇

 (20)

Since ψ and ψ̇ are given by y4 and ẏ4, respectively, and we
know φ, θ, ΩB B

1 , and ΩB B
2 , we can solve for ΩB B

3

ΩB B
3 = ψ̇ cos θ secφ− ΩB B

2 tanφ. (21)

Lastly, we will determine u2, u3, and u4. Taking the time
derivative of (15),

mr(4) = ü1b3 + 2 ΩA B × u̇1b3 + Ω̇
A B × u1b3

+ ΩA B × ΩA B × u1b3

(22)

and projecting onto b3,

ü1 =b3 ·mr(4) − b3 ·
(

ΩA B × ΩA B × u1b3

)
. (23)

Using ü1, (22) can be solved first for Ω̇
A B

and then Ω̇
B B

in
a manner very similar to the determination of ΩB B. Once we
have Ω̇

B B
, we can solve (5) for the inputs. These results will

be dependent on ψ̈ since we will need the time derivative of
(21). The inputs are u2

u3

u4

 = J Ω̇
B B

+ ΩB B × J ΩB B. (24)

Thus, the entire state vector, q, and control inputs, u, can
be determined using only the flat outputs and their derivatives.
Further, the inverse is true. Namely, y and the first four
derivatives can be determined from the state vector and the
control inputs.

An important observation is that the mapping between the
full state space of the quadrotor and the flat space is a
diffeomorphism under the assumptions b3 6= c2 and u1 > 0.
In other words, the mapping between the flat space and the
full state space is bijective and differentiable. Note that u1 ≤ 0
corresponds to zero or negative thrust, which is either not
controllable or physically impossible. This would correspond
to a scenario such as free fall or larger than gravity acceleration
downwards.

2) Optimality: From the previous section, we see that
the 4th derivative of r and the 2nd derivative of ψ are
required to determine the control inputs, which agrees with
[9]. As a result, any four times differentiable trajectory on
position and two times differentiable trajectory on yaw is one
that is dynamically feasible. Coming back to the concept of
differential flatness, we see that for i = 1, 2, 3 we can write

ξi =


yi
ẏi
ÿi...
yi

 . (25)

This allows us to define the flat system as

ξ̇i =

[
03×1 I3×3

01×1 01×3

]
ξi +

[
03×1

1

]
y

(4)
i , (26)

which is simply a chain of integrators with input y(4)
i , or

the snap of the component. Next, ξ4 depends only on two
derivatives giving

ξ4 =

[
y4

ẏ4

]
(27)

and

ξ̇4 =

[
0 1
0 0

]
ξ4 +

[
0
1

]
y

(2)
4 . (28)

Since the inputs are dependent on y
(4)
i for i = 1, 2, 3 and

y
(2)
i for i = 4, we see that minimizing the snap of position

and the acceleration of yaw over the trajectory will minimize
the required control inputs. This is the same result developed
in [9].

4

III. TRAJECTORY GENERATION

Now that the system has been simplified, we can begin to
plan in the flat space. The main inspiration for this approach
comes from [9]. It is desirable that trajectories can be planned
quickly and yet have flexibility. For example, straight line
trajectories are possible, but they certainly would not be ideal
in a maze of obstacles and waypoints. Throughout this section,
it will be useful to define a trajectory using the basis

gT =
[

1 t t2 . . . tn
]

with coefficients

cT =
[
α0 α1 α2 . . . αn

]
.

Thus, the trajectory for one component is gT c. Note that c is
not related to ci from the last section.

The challenge of planning trajectories that minimize the 4th

derivative of position and the 2nd derivative of yaw over the
duration of the trajectory motivates the cost functionals

Ji =

tf∫
t0

∥∥∥y(4)
i (t)

∥∥∥2

dt for i = 1, 2, 3 (29)

and

J4 =

tf∫
t0

∥∥∥y(2)
4 (t)

∥∥∥2

dt, (30)

which are intentionally quadratic. Note that Ji is not the same
as the inertia tensor, J , used previously.

The trajectory generation methods presented in this paper
are based on polynomial trajectories, but are not restricted
to these alone. For example, trigonometric functions such as
sin and cos can be used since they are C∞ differentiable.
The following sections are developed for the minimum snap
components of the flat outputs. The minimum acceleration
component can be derived similarly.

A. Euler-Lagrange

The most basic approach to optimize the trajectory is using
the Euler-Lagrange equations:

∂L
∂f

+

n∑
k=1

(−1)k
dk

dtk
∂L
∂f (k)

= 0. (31)

This relationship gives some insight into how we can plan
trajectories which minimize the cost functionals (29) and (30).
For the first three flat outputs, we have

f = yi and L =
(
y

(4)
i

)2

yielding
y

(8)
i = 0, (32)

which reveals that a necessary condition for minimum snap
is (32). A similar result for i = 4 shows that the 4th

derivative must be equal to 0 for yaw. In practice, using a 7th

order polynomial for position and a 3rd order polynomial for
yaw will satisfy these necessary conditions and generates the
optimal trajectory given the appropriate boundary conditions.

Generating the coefficients, c, can be done quite efficiently
with the inversion of a single matrix of basis vectors:

g(t0)T

g(1)(t0)T

g(2)(t0)T

g(3)(t0)T

g(tf)T

g(1)(tf)T

g(2)(tf)T

g(3)(tf)T



c =



yi(t0)

y
(1)
i (t0)

y
(2)
i (t0)

y
(3)
i (t0)

yi(tf)

y
(1)
i (tf)

y
(2)
i (tf)

y
(3)
i (tf)



(33)

B. Quadratic Programming

A drawback from the previous approach is that the trajectory
is strictly a 7th order polynomial. Unfortunately, only bound-
ary conditions can be specified, not intermediate waypoints
since we require that the position and the first three derivatives
are equal to the adjacent segment at the boundaries. For a
single segment, the derivatives must be equal to 0. We require
this continuity since the dynamics demand smooth derivatives
below snap. For more flexibility, we seek higher order poly-
nomials through the use of using quadratic programming.

We can explicitly write the integrands of the cost functionals

cT
d4g

dt4

[
d4g

dt4

]T
c

and define

G =

∫ tf

t0

dg4

dt4

[
dg4

dt4

]T
dt.

The problem is now posed as a quadratic optimization
problem, or QP, where we want to minimize cTGc over the
duration of the trajectory subject to some specified constraints.

1) Analytic Solution: If only equality constraints are
present, this problem can be solved analytically. Consider:

arg min
c

cTGc (34)

subject to
Hc = d (35)

It is worth noting that G = GT , det(G) = 0, and G � 0. In-
corporating the equality constraint using a vector of Lagrange
multipliers, λ, we obtain

L = cTGc + λT (Hc− d). (36)

Then,

∂L
∂c

= cT (G+GT) + λTH = 2cTG+ λTH.

Because the system is quadratic, we know that at the minimum

∂L
∂c

= 0.

5

This provides another equation that we can use in conjunction
with the equality constraint to solve for c and λ. Without any
loss, we can transpose the equation to obtain

2Gc +HTλ = 0

Finally, consider the following set of linear equations:[
2G HT

H 0

] [
c
λ

]
=

[
0
d

]
. (37)

Then, the inverse of [
2G HT

H 0

]
can be used to estimate c.

This approach enables us to minimize the snap (or acceler-
ation) of trajectories higher than order 7 (or 3). It may require
an approximation of the inverse of a singular matrix, but in
practice, it works well.

2) Numerical Solution: Using H with the same equality
constraints and inequality constraints in a similar form, the
system can be solved numerically using modern quadratic
programming solvers. Non-linear constraints such as thrust
limitations or a circular bounding region can be implemented
as a number of inequalities in the flat space.

C. Other Trajectory Generation Methods

Certainly the proposed trajectory generation methods are not
the only ones. [9] proposes a solution that allows a trajectory to
be scaled, however, in its current form, the velocities are also
scaled, which would be undesirable for grasping and perching
where velocities are important.

The generated trajectories are guaranteed to be dynamically
feasible by the quadrotor, however, they do not consider
actuator constraints. For example, the quadrotor can actuate
to fly a trajectory that is four times differentiable, but it may
not be feasible given the duration. Although there are several
methods to deal with this problem, one will be discussed
briefly.

A fairly recent concept is motion planning using Linear
Quadratic Regulator (LQR) trees [15]. This approach builds
upon Rapidly-exploring Random Trees (RRTs) in that random
points in the state space are chosen and a tree is constructed
towards the random point [16]. A major departure from RRTs,
however, is that LQR trees consider the system dynamics and
control inputs through the use of LQR controllers and a system
that is linearized about the trajectory. A Lyapunov function is
developed based on the LQR design from which a basin of
attraction is determined. This is essentially a funnel in the state
space that guarantees that the output (of the funnel) can be
reached from any starting point within the funnel. Continuing
to choose random points in the state space can probabilistically
cover a desired region. It is interesting to note that LQR trees
could be used to expand pre-existing optimal trajectories.

IV. CONTROLLERS

Now that a desired trajectory has been generated, we seek
to control the robot to follow the trajectory. A traditional
approach is to linearize the dynamics of the quadrotor about
a given state and use either a PID or an LQR controller.
Both of these will be presented below. Additionally, a non-
linear controller on SE(3) will be proposed. Each of these
controllers have two key parts, an attitude controller and a
position controller.

The PID and LQR controllers use the same simplification of
the system dynamics. We generally linearize the system about
hover, although other approaches such as linearization along
the trajectory are possible.

Additionally, while a Feedback Linearization paradigm can
be successful in simulation, it is not practical on real systems
since it requires higher derivatives of position, which are
typically very noisy.

A. PID Controller

A PID controller uses Proportional, Integral, and Derivative
feedback on the error from the desired setpoints. This con-
troller has been explained in detail in [2], [6], and has been
an established method of control for many years. A cascaded
controller is used with the attitude control as the slave and
position control as the master as pictured in Figure 4.

Position
Controller Attitude

Controller
Quadrotor

u1

u2,3,4
−

−

rdes q
γdes

Fig. 4. PID Controller

1) Position Control: Since we are primarily concerned
about the position control, we will specify an attitude that will
drive toward the desired positions. The system dynamics from
(4) are linearized about φ = 0, θ = 0, ṙ = 0, and Ω̇

B B
= 0

to obtain

r̈ =
1

m

 u1 (cos(ψ)θ + sin(ψ)φ)
u1 (sin(ψ)θ − cos(ψ)φ)

u1 −mg


and noting that at hover, u1 ≈ mg, we can simplify the first
two terms to get

r̈ = g

 sin(ψ) cos(ψ) 0
− cos(ψ) sin(ψ) 0

0 0 1
mg

 φ
θ
u1

− ga3. (38)

Defining errors on positions and velocities, the desired
accelerations are

r̈i,des = kposp,i (yi,des − ri) + kposi,i

∫ tf

t0

(yi,des − ri)dt

+ kposd,i (ẏi,des − ṙi)
(39)

for i = 1, 2, 3 where kposp,i , kposi,i , and kposd,i are the gains on
the position, integral, and derivative errors. Then, we can

6

determine u1,des and the first two terms of γdes from (38).
Solving for

[
φ θ u1

]T
, φ

θ
u1

 =

 sin(ψ) − cos(ψ) 0
cos(ψ) sin(ψ) 0

0 0 mg

(r̈

g
+ a3

)
. (40)

Then, the desired attitude from the position controller is

γ1,des =
1

g
(r̈1,des sin(ψ)− r̈2,des cos(ψ)) (41)

γ2,des =
1

g
(r̈1,des cos(ψ) + r̈2,des sin(ψ)) (42)

γ3,des = ψ. (43)

Additionally, we see from (40)

u1 = mr̈3,des +mg. (44)

2) Attitude Control: Now that a desired attitude has been
established, we must try to achieve it. First, we make the
assumption that J is diagonal, which is appropriate since
the mass of the quadrotor is located symmetrically along the
principal axes. Then, the rotational dynamics from (5) can be
linearized to obtain u2,ff

u3,ff

u4,ff

 = J Ω̇
B B

. (45)

This result gives feed-forward control on the desired angular
acceleration. Then, a control law can be written in the form

ui+1 = kattp,i (γi,des − γi) + katti,i

∫ tf

t0

(γi,des − γi)dt

+ kattd,i

(
ΩB B
i,des − ΩB B

i

)
+ ui+1,ff

(46)

for i = 1, 2, 3 where ΩB B
i,des is determined from the flat

outputs of the trajectory and kattp,i , katti,i , and kattd,i are the gains.

B. Linear Quadratic Regulator

To develop the LQR controller, we need the system to be
in state space form. Starting with (38), we treat the ga3 term
as if it is part of the u1 term.

Next, the inverse of the relationship given in (20) relates
the body frame angular velocities and Euler angles φ̇

θ̇

ψ̇

 =

 1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sec(θ) sin(φ) cos(φ) sec(θ)

 ΩB B.

and using small angle approximations, φ̇

θ̇

ψ̇

 = I3×3 ΩB B.

Then, the linear system is given by

q̇ = Aq +Bu (47)

where

A =


03×3 I3×3 03×1 03×1 03×1 03×3

01×3 01×3 gs(ψ) gc(ψ) 0 01×3

01×3 01×3 −gc(ψ) gs(ψ) 0 01×3

01×3 01×3 0 0 0 01×3

03×3 03×3 0 0 0 I3×3

03×3 03×3 0 0 0 03×3


and

B =



05×1 05×1 05×1 05×1
1
m 0 0 0

03×1 03×1 03×1 03×1

0 1
Jxx

0 0

0 0 1
Jyy

0

0 0 0 1
Jzz


which is a controllable system. The control inputs can then be
written in the form

u = K(qdes − q) +


mg
0
0
0

 (48)

where K ∈ Rn×n is a gain matrix. The state vector is the
output of the linear system so the transfer function becomes

G(s) = (sI −A)−1B (49)

and the system is observable. The optimal gain matrix, K, is
determined by minimizing the cost functional

J =

∫ ∞
t0

(
qTQq + uTRu

)
dt (50)

where Q,R � 0 [17]. In order for Q and R to be on similar
scales, we use Bryson’s Rule

R = diag
[
u−2

1,max, u
−2
2,max, u

−2
3,max, u

−2
4,max

]
(51)

and a similar approach is used for Q. Then, K can be
determined by solving the Algebraic Riccati Equation [17]

PA+ATP +Q− PBR−1BTP = 0

where K = R−1BTP .

C. SE(3) Controller

The previous two controllers required linearization of the
system dynamics. This is obviously not desirable and is also
unnecessary. Using the same dynamic model presented earlier,
[18] develops a non-linear controller on SE(3) which is
proven to have near-global exponential attractiveness using a
Lyapunov analysis.

1) Position Controller: As before, the position controller
will simply establish a desired attitude. First, we define er =
rdes − r and ėr = ṙdes − ṙ. Then we establish b3,des as

b3,des =
kper + kdėr +mga3 +mr̈d
‖kper + kdėr +mga3 +mr̈d‖

. (52)

This is nearly identical to [18] except that we are using b3 up
instead of down. Since the desired yaw is y4, we can determine

7

Rd as in II-B starting with (8). Then, the desired thrust is given
by

u1 = [kper + kdėr +mga3 +mr̈d] · b3 (53)

where the dot product with b3 ensures that the total thrust is
inversely proportional to the attitude error. This gives priority
to the attitude controller.

2) Attitude Controller: First, an error function is defined
on SO(3) as

Ψ(R,Rd) =
1

2
tr
[
I −RT

dR
]

(54)

where Rd rotates from the desired attitude to the world
coordinates and R rotates from the body frame to the world
coordinates. Since this may not be intuitive, the implications
will be discussed. The tr operator is linear so that (54)
becomes

Ψ(R,Rd) =
1

2

(
tr [I]− tr

[
RT

dR
])

=
1

2

(
3− tr

[
RT

dR
])
.

Using Rodrigues’ Formula, the tr of RT
dR ∈ SO(3) is given

by 1+2 cos ζ where in axis-angle representation, ζ is the angle
of rotation. Then, the functional looks like

Ψ(R,Rd) = 1− cos ζ.

Now, we see that Ψ = 0 when ζ = 0 and Ψ is maximized
when ζ = ±π.

Next, the minimum of the functional can be found by noting
that RT

dR is a function of time. Defining RT
dR as a rotation

matrix whose time derivative is given by RT
dRη̂,

dΨ

dt
=

1

2
tr

[
d

dt

(
−RT

dR
)]

= −1

2
tr
[
RT

dRη̂
]
, (55)

which can be simplified to

dΨ

dt
=

1

2

(
RT

dR−RTRd

)∨ · η. (56)

where we have used the identity tr(x̂ŷ) = −2(x · y). Then, it
is understandable to define the error on the attitude as

eR =
1

2

(
RT

dR−RTRd

)∨
. (57)

Next, we define ΩD D as the desired angular velocity expressed
in coordinates of the desired attitude frame, D, so that the error
on the angular velocity in the current body frame is

eΩ = ΩB B −RTRd ΩD D. (58)

Then, the attitude control is u2

u3

u4

 =− kReR − kΩeΩ + ΩB B × J ΩB B

− J
(

Ω̂B BRTRd ΩD D −RTRd Ω̇D D
)
.

(59)

The first two terms provide feedback control on the attitude
and the angular velocity. The third term, ΩB B×J ΩB B, is the
current state, and the last term provides control on the angular
acceleration.

This attitude controller is shown in [18] to be exponentially
stable when

Ψ0 < 2

and
‖eΩ(0)‖2 < 2

λmax(J)
kR (2−Ψ0) . (60)

Additionally, the tracking controller is shown to be exponen-
tially stable when

Ψ0 ≤ 1 (61)

and (60) are true. This corresponds to an initial geodesic angle
error of less than π/2. Note that as the inertia or the initial
angular velocity error increases, we require a higher gain, kR.

A verbose version of the Lyapunov stability analysis for the
attitude, translational, and total dynamics can be found in the
appendix of [19]. Further, [14] is a comprehensive source of
information pertaining to geometric control.

D. Summary of Controllers

While each controller has its benefits, such as the simplicity
of a PID controller, optimality of LQR, and the non-linear
control on SE(3), they do have downfalls. For example, the
PID and LQR controllers require careful consideration of the
Euler angles, particularly when the reference or actual angles
approach branch cuts. While it is not difficult to implement
corrective algorithms, the PID and LQR controllers still re-
quire a linearized system, which loses significant information
about the system. On the other hand, the non-linear controller
on SE(3) is challenging to prove, but does not suffer from
singularities and has near global asymptotic attractiveness.

V. OTHER AERODYNAMIC CONSIDERATIONS

The dynamic model typically used in literature is based on
the assumption that the rotors only generate forces and mo-
ments acting axially. While this is generally true for hovering
and vertical flight, it is a well known fact in helicopter and
rotor theory that this is not the case in forward flight [10].
Other aerodynamic factors include the angle of attack, which
requires higher thrust to maintain altitude, differing relative
velocities of the advancing and retreating blades, which creates
blade flapping, and the disrupted airflow around the body
of the quadrotor, which creates drag [20]. In light of such
knowledge, [21] develops a controller that factors in the result
of airflow parallel to the plane of the rotor. The body drag is
ignored since it is related quadratically to the velocity, and
therefore, it is negligible at low velocities. The difference
between the “standard model” and the “proposed model” is
considered insignificant in practice. However, this analysis
only considers the rotor drag for an outdoor system and it
is not a comprehensive model of the aerodynamics. A more
applicable model can be developed for feed-forward control if
we have better state estimation. For example, the consideration
of the free stream velocity of the airflow perpendicular to the
rotor plane has been shown to significantly improve tracking
performance during ascent [22].

VI. PERCHING

Using the planning, trajectory generation, and control tech-
niques outlined in this paper, the perching problem, in its
simplest form, becomes fairly straightforward. In general,

8

perching on horizontal surfaces will necessitate minimal trans-
lational velocities and only a small vertical velocity at the
time of impact. Perching is then reduced to the problem of
planning a trajectory from the current state to the perch point
that terminates with non-zero boundary conditions. We can
enforce further constraints that will alter the aggressiveness of
the trajectory such as the desired acceleration at impact or the
maximum snap along the trajectory. One important considera-
tion is the rate of descent. Recall that to maintain control, we
require u1 > 0. While this is always a consideration, it will
particularly manifest itself when minimizing perching time.
Additionally, if u1 is small, the position control would require
greater angular deviations from hover, which is not desirable
especially near a perch location. Thus, we require u1 > ε > 0
where ε is determined experimentally.

VII. GRASPING

Grasping is highly dependent on the design of the gripper
and therefore, one particular approach will be explained.
The gripper used in our experiments was designed with the
intention of grasping man-made objects with minimal effort.
A sphere was attached to a rod, which was attached to the
target. This design allows omni-directional approaches on the
target. The quadrotor, gripper, and grasped object are shown
in Figure 1.

Now we have added another segment to the trajectory since
grasping does not end at the pickup location. A final position
is specified and we must optimize both segments of the
trajectory. It is worth noting that it would be straightforward to
use a single polynomial and specify the target location as an
intermediate equality constraint if a QP approach was used.
Additionally, computing a single polynomial for the entire
trajectory may decrease computation time.

As with perching, grasping requires certain constraints such
as a specified velocity at the pickup location. For example, the
grasping success rate of the gripper was significantly improved
with a slight velocity in the positive a1 direction.

VIII. RESULTS

A. Trajectory Generation

The relative durations of the three different trajectory gener-
ation methods have been summarized in Table I. Sample snap
profiles are provided in Figure 5.

TABLE I
DURATION OF TRAJECTORY GENERATION FOR 1 ITERATION

Calc. Time (ms)
Euler-Lagrange 127

QP Equality 115
Numerical QP 1549

Obviously, the numerical solution is not practical for quick
planning. A custom solver, however, may decrease the compu-
tational time. It is somewhat unexpected that the analytic QP
is faster than the Euler-Lagrange solution. This variation may
be a result of differences in code optimization. Regardless,

the first two methods are fast enough that they can be used in
flight to generate trajectories.

The three methods return the same result for equivalent
boundary conditions as seen in Figure 5. However, the flex-
ibility of the quadratic programming approaches allows for
specifying intermediate boundary conditions so that the tra-
jectory generated in Figure 10 could be generated as a single
trajectory instead of two separate trajectories pieced together
as required with the Euler-Lagrange solution.

0.2 0.4 0.6 0.8 1 1.2

−400

−300

−200

−100

0

100

200

300

400

500

t (s)

sn
ap

 (
m

/s
4)

E−L
QP−Algebraic
QP−Numerical

Fig. 5. The snap of the three trajectory generators is compared for one
component of a sample trajectory. The boundary conditions are the same
among generators and there is no time optimization. The Euler-Lagrange
solution is a 7th order polynomial while the QP solutions are permitted to
generate 11th order polynomials. Note that the three solutions are identical.

B. Controllers

The same trajectory was flown in simulation using a PD
controller in Figure 6 and the LQR controller in Figure 7. This
particular trajectory has two segments that are joined at the
pickup location. The boundary positions are specified, and the
boundary velocities, accelerations, and jerks are zero. Lateral
and vertical velocities are specified at the pickup location, and
the angle of approach is computed to be the same angle of the
line segment between the start and finish positions. To ensure
that the quadrotor is level when grasping, the acceleration and
jerk at the pickup location are required to be zero.

The PD and LQR controllers yield similar results. However,
their performance is highly dependent on tuning. In general,
the LQR controller is easier to tune because we are only
adjusting one tuning parameter, a scaling factor between Q
and R, instead of eight as with the PD controller.

C. Perching

The perching and trajectory generation capabilities were
demonstrated in an experiment that allowed for random in-
teraction from a user. The quadrotor was driven in a straight

9

0 1 2 3
−1

0

1

2
P

os
iti

on
 (

m
)

x
y
z

0 1 2 3

−0.01

0

0.01

er
ro

r
(m

)

time (s)

Euclidean Error

Pickup Location

Fig. 6. Position tracking performance of the PD controller. The X , Y , and
Z positions in the world frame (top) are optimized for the dynamics of the
quadrotor. The error for each component as well as the Euclidean error are
give on the bottom.

0 1 2 3
−1

0

1

2

P
os

iti
on

 (
m

)

x
y
z

0 1 2 3

−0.01

0

0.01

er
ro

r
(m

)

time (s)

Euclidean Error

Pickup Location

Fig. 7. Position tracking performance of the LQR controller for the same
trajectory as Figure 6. The errors are similar in magnitude to the PD controller.

line towards an arbitrary point. Then, at a random time along
the trajectory, the quadrotor was commanded to perch. Con-
sidering the initial conditions and the desired final conditions,
a minimal snap trajectory was planned in-flight to drive the
robot to the perch location. A sample trajectory projected
onto the X − Z axes has been provided in Figure 8 and the

corresponding attitude is displayed in Figure 9. An expected
result was observed; the error at the end of the trajectory is
larger than the rest of the trajectory. This likely a result of
ground effect, which causes an increase in the net thrust as
the quadrotor approaches the ground [23], [22].

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x (m)

z
(m

)

Actual
Quadrotor
Desired

t = 0s

t = 1s

t = 2s

Fig. 8. The trajectory of a quadrotor perching using PID control after being
interrupted during the straight line maneuver. This is a projection onto world
X-Z plane. The perching trajectory considered the initial velocity in the −X
direction and specified a small final velocity in the −Z direction.

0 0.5 1 1.5 2

−0.1

0

0.1

0.2

0.3

0.4

time (s)

A
ng

le
 (

ra
d)

φ, θ, ψ

φ
θ
ψ
φ

ff

θ
ff

ψ
ff

Fig. 9. Roll, Pitch, and Yaw of the perching trajectory in Figure 8. The
feed-forward control is indicated by lines and the actual angles are indicated
by markers.

D. Grasping

In addition to perching, this trajectory planning method
allows for multi-segmented trajectories necessary for grasping.

10

−0.5 0 0.5 1 1.5 2
0.8

1

1.2

1.4

1.6

1.8

2

2.2

x (m)

z
(m

)

Actual
Quadrotor
Desired

t = 0s

t = 2s

t = 4s

Fig. 10. A grasping trajectory projected onto the world X-Z plane. The
quadrotor orientation is overlayed and scaled such that the Quadrotor Lines
are the projected distance from the front rotor to the rear rotor. This experiment
was conducted with a real quadrotor without picking up a target.

To demonstrate this, a target location in the workspace was
given and a final position was chosen randomly. While flying
in a random direction, the quadrotor was commanded to plan
an optimal path to the target and end at the randomly selected
final location. Experiment results are presented in Figure 10.

In experiments with grasping, the quadrotor’s dynamics
change after pickup, and minor instabilities resulting from the
pendulum-like swinging of the target are observed. In future
work, the gripper will be designed to minimize swinging of
the target, which will allow for compensation by anticipating
the change in dynamics after target acquisition.

IX. CONCLUSION

The success and application of three trajectory generation
methods have been demonstrated in this paper. Overall, the
analytic QP solution has the best balance of capability and
speed. However, each solution has its benefits, namely the sim-
plicity of the Euler - Lagrange approach and the flexibility of
the Quadratic Programming methods. Next, several controllers
were presented; PID, LQR, and SE(3). The PID and LQR
controllers are appropriate for minimal excursions from hover,
but for more aggressive maneuvers, it will be beneficial to
use the non-linear SE(3) controller. Finally, the ground effect
resulting from perching on flat surfaces was observed and the
implications of a new rotor model were briefly discussed.

X. FUTURE WORK

There are many possible directions for improvement. First,
the controller developed in [18] will be implemented on the
physical system. Additionally, in-flight replanning for acqui-
sition of moving targets will be explored. This may utilize
concepts such as preplanned sets of dynamically feasible
trajectories. In an effort to reduce the reliance upon VICON,
visual servoing will be used for target acquisition, tracking,
and perching. A collaboration has been established to develop
new grippers which will allow for perching on a larger variety
of surfaces and grasping of arbitrary objects. Finally, the
aerodynamics of ground effect and rotor drag need to be
considered to improve the precision of perching as well as
tracking control of aggressive trajectories.

XI. ACKNOWLEDGEMENTS

The author would like to thank Vijay Kumar for his
guidance and patience throughout the development of this
paper. Additionally, the author is grateful for Matt Turpin’s
encouragement and many discussions.

REFERENCES

[1] Quentin Lindsey, Daniel Mellinger, and Vijay Kumar. Construction of
Cubic Structures with Quadrotor Teams. In Proceedings of Robotics:
Science and Systems, Los Angeles, CA, USA, 2011.

[2] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory Gener-
ation and Control for Precise Aggressive Maneuvers with Quadrotors. In
Proceedings of the International Symposium on Experimental Robotics,
2010.

[3] Vijay Kumar and Nathan Michael. Opportunities and challenges with
autonomous micro aerial vehicles. Int. Symp. on Robotics Research,
pages 1–16, 2011.

[4] Daniel Mellinger, Quentin Lindsey, Michael Shomin, and Vijay Kumar.
Design, modeling, estimation and control for aerial grasping and ma-
nipulation. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on, pages 2668–2673. IEEE, 2011.

[5] Daniel Mellinger, Michael Shomin, and Vijay Kumar. Control of
Quadrotors for Robust Perching and Landing. In Proceedings of the
International Powered Lift Conference, 2010.

[6] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar.
The GRASP multiple micro-UAV testbed. Robotics & Automation
Magazine, IEEE, 17(3):56–65, 2010.

[7] Vicon Motion Capture System.
[8] Ascending Technologies GmbH.
[9] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation

and control for quadrotors. In 2011 IEEE International Conference on
Robotics and Automation, pages 2520–2525. IEEE, May 2011.

[10] Alfred Gessow and Garry Myers. Aerodynamics of the Helicopter.
Frederick Ungar Publishing Co., 1978.

[11] Michel Fliess, Jean Levine, Philippe Martin, and Pierre Rouchon. Flat-
ness and defect of non-linear systems: introductory theory and examples.
International Journal of Control, 61(6):1327–1361, June 1995.

[12] R.M. Murray, M. Rathinam, and Willem Sluis. Differential flatness
of mechanical control systems: A catalog of prototype systems. In
Proceedings of the 1995 ASME International Congress and Exposition.
Citeseer, 1995.

[13] Jeff Ferrin, Robert Leishman, Randy Beard, and Tim McLain. Differ-
ential flatness based control of a rotorcraft for aggressive maneuvers.
In 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2688–2693. IEEE, September 2011.

[14] Francesco Bullo and Andrew Lewis. Geometric Control of Mechanical
Systems. Springer Science + Business Media, Inc., 2005.

[15] RL Tedrake. LQR-Trees: Feedback motion planning on sparse random-
ized trees. In Robotics: Science and Systems, Seattle, WA, 2009.

[16] SM LaValle. Rapidly-Exploring Random Trees A New Tool for Path
Planning. 1998.

[17] Daniel Liberzon. Calculus of Variations and Optimal Control Theory.
2011.

[18] Taeyoung Lee, Melvin Leoky, and N. Harris McClamroch. Geometric
tracking control of a quadrotor UAV on SE(3). In 49th IEEE Conference
on Decision and Control (CDC), number 3, pages 5420–5425. IEEE,
December 2010.

[19] Taeyoung Lee, Melvin Leok, and N.H. McClamroch. Control of
Complex Maneuvers for a Quadrotor UAV using Geometric Methods
on SE(3). Asian Journal of Control, 2011.

[20] GM Hoffmann, H Huang, and SL Waslander. Quadrotor helicopter flight
dynamics and control: Theory and experiment. American Institute of
Aeronautics and Astronautics, pages 1–20, 2007.

[21] Philippe Martin and Erwan Salaun. The true role of accelerometer
feedback in quadrotor control. In 2010 IEEE International Conference
on Robotics and Automation, pages 1623–1629. IEEE, May 2010.

[22] Caitlin Powers, Daniel Mellinger, Aleksandr Kushleyev, and Bruce Koth-
mann. Influence of Aerodynamics and Proximity Effects in Quadrotor
Flight. In ISER 2012 (accepted), pages 1–14.

[23] Wayne Johnson. Helicopter Theory. Dover, 1994.

