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Abstract—We propose a general solution for the problem of
distributed, vision-based formation control of aerial vehicles. Our
solution is based on pure bearing measurements, optionally aug-
mented with the corresponding distances. As opposed to the state
of the art, our control law does not require auxiliary distance mea-
surements or estimators, it can be applied to leaderless or leader-
based formations with arbitrary topologies, and it has global
convergence guarantees. We validate our approach through
simulations and experiments on a platform of three quadrotors.

I. INTRODUCTION

The goal of formation control is to move a group of agents
in order to achieve and maintain a set of desired relative
positions. This task has applications in many fields, such as
surveillance, exploration, and transportation [10, 1, 4, 20, 11,
12]. For instance, agents with known relative positions can
gather measurements which would be otherwise impossible
to obtain (e.g., triangulate the position of a target), can be
controlled by a single human operator, and can mimic bio-
inspired energy-saving motion strategies [17].

Although the formation control problem has a long history,
we focus here on vision-based solutions ([5, 14, 13]) that
put more emphasis on measurements of relative bearing (i.e.,
direction) as opposed to distance (which are much less reliable).

In this spirit, Bishop et al. [2] proposes a distributed control
law for pure bearing formations. However, in order to be
implemented, the law requires also the distance measurements
corresponding to each bearing measurement. Franchi et al.
[7, 6] propose different control strategies which require only
one or no distance measurements, relying in turn on a special
graph structure or the use of distributed estimators. This reduces
the practical applicability of the method. All of these works
use simple integrators to model the agent positions. Stacey
and Mahony [21] consider a full dynamical model (second
order) for the agents and propose an approach based on port-
Hamiltonian theory. However, the derived control law again
requires distance measurements. In all of the above (except
[7]), it is assumed that the agents share a common rotational
frame (i.e., all the local reference frames can be aligned to have
the same directions, but not necessarily the same origin). This
could be either satisfied by using consensus-like algorithms, as
in [7], or completely eschewed, as in [3, 23], although the latter
are limited to triangular and 2-D circular formation topologies.

Our contributions. In this work, we keep the assumptions
of a common rotational frame and a simple integrator model.
However, we propose a flexible framework which, unlike
previous work, has global convergence guarantees (Theorem 1)

Fig. 1: A photograph of the formation of three quadrotors from
our experimental setup.

and requires only minimal assumptions on the formation (i.e.,
it should be rigid, as defined later). The proposed control law
is computed directly from bearing measurements (optionally
augmented with distance measurements), it does not need any
auxiliary estimator, and it is distributed (in fact, if each agent
can sense all of its neighbors, no communication is necessary).
In addition, for particular cases, our control law becomes
correspondence-less, in the sense that no correspondence
between measured and computed bearings is required. Our
approach also naturally covers both 2-D and 3-D formations,
and can be (optionally) used with leader nodes. No existing
works has all these properties at the same time. Finally, we
validate our solution through simulations and a set of three
quadrotors equipped with on-board cameras.

II. NOTATION AND DEFINITIONS

We identify the set of N agents as V = {1, . . . , N}, and
their location as {xi}i∈V , xi ∈ Rn. We define the distance
between nodes i, j ∈ V as

dij(xi, xj) = ‖xj − xi‖, (1)

and, when dij 6= 0, the bearing direction as

βij(xi, xj) = d−1ij (xj − xi). (2)

We define a bearing+distance formation as a pair (F,x), where:
• F = (V,Eb, Ed) is a double graph in which Eb ⊆ V ×V

(resp., Ed ⊆ Eb) contains the set of pairs (i, j) for which
agent i can measure the bearing βij (resp., the range dij).

• x = stack({xi}i∈V ) is the configuration of the formation.
We assume that Eb and Ed are symmetric, i.e., if (i, j) ∈ Eb,
then also (j, i) ∈ Eb (the same for Ed). Note that, since βij =



−βji and dij = dji, this can either happen naturally or through
communication (if node i senses j, it can send its measurements
to j). We stress that Ed ⊆ Eb, i.e., that agent i can measure
the distance dij only if it can also measure the bearing βij
(this is a natural assumption for vision measurements). We
generally assume Ed 6= ∅. For the particular case Ed = ∅ (i.e.,
no range measurements) we call F a pure bearing formation.

We denote the vector of all available measurements as

y(x) = stack({βij}(i,j)∈Eb
, {dij}(i,j)∈Ed

). (3)

Two formations (F,x) and (F,x′) with the same rotational
frame of reference are said to be
• equivalent if y(x) = y(x′),
• similar if x′ can be obtained from x using a translation

followed by a dilation,
• congruent if x′ can be obtained from x using a translation.

If the rotational reference frames of two formations are not
the same, then the definitions above need to be extended to
compensate for the difference. A bearing+distance (resp., pure
bearing) formation is said to be rigid (resp., parallely rigid, or
simply rigid) if all formations which are equivalent to it are also
congruent (resp., similar). In practice, one can check whether
a formation is rigid by checking the rank of the so called
rigidity matrix [2, 19]. Intuitively, a formation is rigid when the
configurations x that produce the same measurements y have
also the same “shape”. In practice, the translation ambiguity
is fixed either by the position of the leader or through the
centroid invariance (see Section III-D).

Finally, we call a formation leaderless if every agent in the
network is autonomous, and leader-based if one of the agents
(say, node ı̂) follows an independently specified trajectory.

III. FORMATION CONTROL

We assume that each agent follows a simple integrator model:

ẋi(t) = ui, (4)

where ui is a control input. Given desired measurements yg

which are consistent with a desired rigid formation (F,xg),
our goal is to design inputs ui that drive the agents into a
configuration similar (for pure-bearing formations) or congruent
(for bearing+distance formations) to xg. We propose to use
the negative gradient of a special cost function ϕ(x), i.e.,

ui = − gradxi
ϕ(x). (5)

Of course, if present, the leader will follow an independent
control law uı̂ (for the analysis, we will assume uı̂ ≡ 0,
although, with sufficiently high gains, in practice our control
law can satisfactorily track any smooth trajectory). We will
now introduce the proposed control law and its properties.

A. The cost function
The cost function we propose is of the following form:

ϕ(x) = αb

∑
(i,j)∈Eb

ϕb
ij(xi, xj) + αd

∑
(i,j)∈Ed

ϕd
ij(xi, xj), (6)

ϕb
ij(xi, xj) = dijfb

(
cij
)
, (7)

ϕd
ij(xi, xj) = fd

(
qij
)
. (8)

We now proceed to explain the various parts of this equation.
At a high level, ϕ is composed of a summation, with positive
weights αb and αd, over the edges Eb and Ed, where each term
is a function of one of the two following “similarity measures”
between the current and desired measurements, y(x) and yg:

cij(xi, xj) = βT
g,ijβij , (i, j) ∈ Eb (9)

qij(xi, xj) = βT
g,ij

(
xj − xi − (xg,j − xg,i)

)
= βT

g,ij(dijβij − dg,ijβg,ij)
= dijcij − dg,ij , (i, j) ∈ Ed. (10)

Eq. (9) is the cosine of the angle between the measured
and desired bearings, while (10) quantifies the discrepancy
between the measured and desired relative position of the
agents projected on the line given by βg,ij (cij = 1 and qij = 0
when bearing and distances coincide). We use qij instead of a
simple difference of the distances because qij is actually linear
in the configuration x (as it can be seen from the first equality
in (10)). Each of these similarities is weighted by a reshaping
function (fb or fd), for which we will require some properties
in order to show convergence. For the experimental validation,
we will use fb(c) = 1− c and fd(q) = 1

2q
2.

B. Global asymptotic stability
In this section we state a result on the convergence of our

control law to the desired formation from any initial condition.

Theorem 1. Assume that the desired formation (F,xg) is
rigid, and that, for leader-based formations, the leader agent
is stationary. Assume also that

fb(c), fd(q) ≥ 0, with equality iff c = 1, q = 0 (11)

dfb(c)

dc

{
≤ 0 and finite for c = 1,

< 0 otherwise,
(12)

fb(c) + (1− c)dfb(c)
dc

≤ 0, (13)

sign

(
dfd(q)

dq

)
= sign(q). (14)

Then, a configuration x is a global minimizer and a critical
point of ϕ if and only if it is equivalent to xg. It follows
that any trajectory defined by (5) converges to a configuration
which is congruent (or, for pure bearing formation, similar) to
the desired one, xg .

At a high level, this result can be proved by first showing that
y(x) = yg if and only if ϕ(x) = 0. Then, one can show that
the derivative of ϕ along lines starting from a global minimizer
never vanishes, and hence no other critical points are present.
This, together with some rather standard technical remarks on
gradient systems, implies global asymptotic stability.

C. Correspondence-less control law
For the particular choice fb(c) = 1−c and with pure bearing

formations, our control law simply becomes:

ui = −αb

 ∑
j:(i,j)∈Eb

βg,ij −
∑

j:(i,j)∈Eb

βij

 . (15)



Note that (15) can be separated in (unordered) sums containing
either the current or the desired measurements, and no specific
correspondences between the two are needed. As a result, we
say that the law is correspondence-less.

D. Centroid invariance

Notice that, for leaderless formations, we have
gradxi

ϕb
ij(xi, xj) = − gradxj

ϕb
ji(xj , xi) (similarly for

ϕd
ij). Then, if we let the centroid of the formation be

m =
1

N

∑
i∈V

xi, (16)

it follows that m is invariant with respect to the trajectories of
the closed loop system, i.e., ṁ = 0. This ensures that, even
without a leader, the formation as a whole will not drift from
its initial position.

IV. SIMULATIONS

We first validate the proposed controller through a simulated
network of seven agents. The desired leader-based formation
is one where all the agents are equally spaced around a circle.
Each agent i measures its bearing with respect to agent i+ 1
and i+ 2 (and viceversa), i = 1, . . . , 5. We also add a single
distance measurement. The initial positions of the agents are
random, and the leader (̂ı = 4) moves with constant velocity on
the negative x-axis and with a sinusoidal motion on the y-axis.
Figure 2 shows that the agents quickly converge to the desired
formation and then closely follow the desired trajectory.

V. EXPERIMENTS

The presented approach is tested using 3 Asctec Humming-
bird quadrotors [8]. Each vehicle is equipped with an ODROID-
XU [15] computer board with Ubuntu Arm 13.04, ROS [18],
and OpenCV [16]. Additional hardware includes a monocular
RGB camera from Matrix-Vision [9], a 13 cm diameter colored
circle for vision detection, and retroreflective markers that
can be tracked by Vicon cameras [22] for velocity feedback.
Figure 3 shows a block diagram of the system.
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Fig. 2: Simulation of bearing+distance formation with a
moving leader (solid circle). Blue: desired formation. Red:
final formation. Red crosses: initial configuration of the agents.
Thick lines: edge with distance measurement.
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Fig. 3: This figure displays a block diagram of the multi-robot
system. Using the consensus algorithm, the relative yaw and
scale are estimated and used to compute a desired velocity, ẋdes,
for each of the robots using the proposed control alogorithm.

Each vehicle is configured to visually detect the colored
circular identifiers on the other robots. We estimate the bearing
and distance by fitting an ellipse to the contour points of the
other robots targets’. The Inertial Measurement Unit (IMU) on
each robot is used to rotate the bearings to a level plane and
are are sufficient to drive the control algorithm discussed in
Section III. In practice, to improve performance, we use a robust
consensus algorithm running on a ground station to collect the
measurements from all robots and estimatea common yaw and
scale that give a reliable estimation for all dij (with a fully
connected graph, this uses N(N − 1) sets of measurements).

To validate the proposed control approach, we design and
execute an experiment with gross 3-D motion of the formation.
The formation’s global position and orientation is specified by
directly controlling one robot, designated as the leader, using
position feedback from the external motion capture system. The
other robots in the formation maintain their relative positions
to this lead vehicle and rely on the external motion capture
system only for velocity feedback. The vision algorithm, the
velocity controller, and the position controller run onboard
each of the vehicles, with the vision loop executed at 15 Hz.

In the presented experiment, the leader is commanded to
translate in both horizontal and vertical directions, and the
other two robots follow the motion (see Figure 4).

VI. CONCLUSIONS

In this work, we proposed a framework for bearing-based
formation control that can be naturally complemented with
inter-agent distance measurements and leader agents. We also
proposed a correspondence-less version of the control law and
shown global convergence and centroid invariance. We tested
our approach in simulated and real experiments. In the future,
we plan to: investigate more rigorously the effect of noise
and of moving or changing formations on the control law,
extend the approach to second-order agents (which can be
more closely mapped to real quadrotors, thus eliminating the
need of external localization systems), and take into account
other physical constraints such as limited field of views.
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