

Avian-Inspired Grasping for Quadrotor MAVs Justin Thomas, Joe Polin, Giuseppe Loianno, Koushil Sreenath, Vijay Kumar GRASP Lab, University of Pennsylvania

Motivation

- Prior research in aerial grasping only permitted slow, quasi-static motions [1, 2].
- We are interested in rapid acquisition of targets.
- Dynamic coupling between flight, grasping, and manipulation cannot be ignored.

Goals of Our Research

- Study the dynamics of aerial grasping
- Generate dynamically feasible trajectories to acquire or deploy small ground robots and sensors
- Develop vision-based control algorithms for dynamic acquisition of objects

Bio-Inspiration

How does nature solve similar problems?

We draw inspiration from nature, which already has examples of effective and efficient grasping.

Figure: Predatory birds such as the bald eagle are excellent at grasping prey while in motion [3].

Gripper Design

An underactuated gripper is attached to an articulated arm to reduce the relative velocity between the gripper and the target. The gripper is manufactured using laser-cut ABS.

Dynamic Model

A dynamic model for a planar quadrotor with an articulated appendage is developed using the Euler-Lagrange equations.

The system is differentially flat with a set of flat outputs being

 $\mathbf{y} = \begin{bmatrix} x_q & z_q & \beta \end{bmatrix}^T$

Dynamically feasible trajectories can be planned in the flat space and mapped to the full state space of the coupled system.

Results

Nondimensionalized kinematic analysis of an eagle's motion provides boundary conditions for the motion planner.

We demonstrated successful acquisition of a target while moving at 2 and 3 m/s with feedback from a motion capture system.

Figure: A still image comparison of a bald eagle and the robot grasping targets. For more details, see [4].

Current and Future Work

- Formulate grasping as a visual-servoing problem
- image features

- Quadrotor Teams," in Robotics: Science and Systems, 2011.
- and Landing," in International Powered Lift Conference, 2010.
- Nature's Most Amazing Events. 2009.
- Quadrotor Micro UAVs," to appear IDETC/CIE, 2013.

LABORATORY

Develop image-based control algorithms with feedback from

Perform onboard blob detection using a Gumstix at 60 Hz

Extend dynamic model and differential flatness to the 3-D case

Extend the visual-servoing to the 3-D case by considering image moments for orientation estimation of the cylinder in the image

References

[1] Q. Lindsey, D. Mellinger, and V. Kumar, "Construction of Cubic Structures with

[2] D. Mellinger, M. Shomin, and V. Kumar, "Control of Quadrotors for Robust Perching"

[3] K. Bass, B. Leith, J. Anderson, P. Bassett, J. Stevens, H. Pearson, and J. Turner,

[4] J. Thomas, J. Polin, K. Sreenath, and V. Kumar, "Avian-Inspired Grasping for