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I. INTRODUCTION
This work provides additional derivations and technical
proofs related to [1] and is considered supplementary material.
II. PRELIMINARIES

The translational dynamics of a quadrotor can be expressed
as
m¥, = —mges + fRY e; (1)

where m is the mass of the vehicle, g is gravity, and f is the
net thrust. Further, the angular dynamics are given by

RY = RYQ 2
IN+QAxIN=M (3)

where €2 € R3 is the angular velocity of the robot in the body
frame, 7 is the inertial tensor, M € R? is the control moments,
and * : R? — 50(3) is defined such that &b = a x b.

Let

faes = m (905 + T (ues + ko +8as) + T 715) (&)

where

€5 = Sdes — S, €5 = Sdes — S

are the position and velocity errors in the image coordinates,
and k, and k, are positive gains. Then, let the thrust be

f = fges - R}éve3 )

and the attitude controller be as defined in [2], the system
defined by eq. (1) and eq. (3) is exponentially stable.

III. STABILITY OF THE ANGULAR DYNAMICS
Following the treatment in [3], the Lyapunov candidate is

1
Vg = 599 Teq + krWV (R, Rg) + c2er - eq, (©)

with ¢y being a positive scalar, such that,

zj Myzg < Vg < zj Moz, (N
Vr < —2j Wozo, ®)
where zg = [||lexr||, [eal]]”., and My, Me, and W are positive

definite. This in turn guarantees the asymptotic staibility of the
attitude dynamics.
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IV. STABILITY OF TRANSLATIONAL DYNAMICS

The velocity of the image features is given by

L OT(PY)
opY !
Since
PY = —RERjy%,,

we can express the image feature velocities in terms of the
robot velocity in the inertial frame and the point PY

~ar (PY)
Py

Using (9), the acceleration of the robot can be expressed in
terms of J, s, and their derivatives

§ = RYRS%, = JX,. 9)

m (J’lé n J'—ls) = fRYe; — mges. (10)
Rearranging, the dynamics of the image features are
§= %J (ngveg—mgeg—mJ.—lé) . an
Using (9), we can determine the image errors
8y = Ggos — %J (ngVe3 — mges — mJ'—ls) .12
so that
més = miges — fJRY €3 + Jmges + mJJ-1s.  (13)

Defining
f

X=Ja==5—
el RTR)Y e;

(Rees — (e RTRYes) R es), (14)

the error dynamics become

. . f )
s = es J 71:{(: X
me msq (egRZR}Q/eg es3 | + (15)
+ Jmges + mJJ1s.
Next, let
f = faes - RY'es, (16)
and the commanded attitude be defined by
f €s
Roes = —2 a7

Hfdesn'



Then, from the previous two equations, we have
f = IIfaes|l €3 R RY'es. (18)
Substituting this into (15) and using f;.s, we have

Hfdes”e RTRB €3
el RTRY
+nge3+mJJ s

mészmédes—J< Re>+X

—m8aes — J ([faesl] Roes) + X (1%
+ Jmges +mJJ 1§
=M8des — JEies + X + Jmges + mJJ 18,
From eq. (4) the error equation finally becomes
meés = —kes — k€&, + X. (20)
Proof: We use the Lyapunov candidate from [3]
Vo= ghelledl + gmle)® +eies 6 @)
Now, let z, = [ |les||, el ”, then it follows that the
Lyapunov function V), is bounded as
2z Mz, <V, <z’ Mgz, (22)

where M, Mg € R?*2 are defined as,

M, = [Kp —a

2|—c1 m m

et g] o
Then,

Vo =k (&5 €5) +m (& -€) +c1(es- & +6é-¢), (24)
and incorporating (20),

Clk

. g
Vs = les|® + (ko — 1) [é]]

—|—ch (es-€5)+X- (EeS + és) . (25)
Now, we establish a bound on X. From (14),

f
X = Jm ((engRed) Re3 - Rce3)

Hfdes” RceS : ReS
X <
R e [
< N1 faesl llerll
< [|J[fm ‘ ges + J (kpes + kyés + 8es) + J"léH ezl
< (K lesll + &y [les]l + B) [lexll,
(26)
where k., k., B are as defined as
Ky =m |l T[ T ke, 27)
= m (111 ke + [ ]). 8)

B =m |7 (94 170 acsll + |77 Isaesl]) . 29)

and from [3], 0 < [leg] < 1.

Next we will show that there exists positive constants
Y1:72,73 St < 31, ||[77Y] £ 2, and HJAH < 7s.
Since T is smooth (we only require C? here), .J is smooth on
the closed set S. This implies J is bounded on S, i.e., 3y; > 0,
s.t. |[J|| < 1. Next, since .J is smooth and nonsingular on S,
the inverse is well defined and is smooth on .S, which implies
J s bounded on S, ie., Iyy > 0, s.t. HJ 1” < 2. Next,
observe that & .J~1(x,) = 52 J~1(x,)%, is a composition of
smooth functlons on S, implymg that it is bounded on S, i.e.,
E"')/g > 0, s.t. HJilH < 3.

Then, similar to [4], we can express VU as

C1 kz

lesll® + (k= 1) &
+c15 Ky (e, &) +X - (%es + és)
e
let 1w | e} |
C1 .
+ & e llerll (5 lles + l1&]1)
R & R
+ K, e llerll (5 llel + 111
C1 .
+ Bllerll (= el + l1&11)
This expression can be written as,

Vs < —zl Wiz, + 2] Wipzo, (30)
where Wy is defined in eq. (33).

V=

< = [ llesll

_ 2m _ |m
W51 - [ % kv - ‘| ,ng - |: B 0:| P (31)
crak! o (e 4 k‘/>
Ws., = m 2 (m v /)| 32
gl O] @
We=Ws, —Ws,. (33)

Since W, = (W,)” and W, € R2*2, it is sufficient to show
that det(WWs) > 0 and Wy(1,1) > 0 in order to claim that
W, > 0. Then, assuming (1 — ay;y2m) > 0, we have wy; >
0. This is reasonable since « is a functional on the attitude
error such that o € [0, 1]. Thus, this assumption is simply a
bound on the attitude error. The determinant can be expressed
as a quadratic function of £, such that

det(Wy) = Bo + Biky + Bok? (34)

and (; is a function of ¢y, kg, v1, 72, 3, and m. The critical
point of the quadratic occurs when

kzm + kmm+a61’7173

k, = , 35
c1 c1 (1 — ay1yam) (35)
and has a value of
ky (1 — kym — ¢
det(W,) =~ (1 — ay1yam) (kam — cf) . 36)

m

In both equations, since (1 — ay;y2m) > 0, the eq. (35) is
positive, eq. (36) is positive and W > 0.



V. STABILITY OF THE UNDERACTUATED SYSTEM

Now, we consider the combined Lyapunov candidate for
the translational and rotational error dynamics, V = Vs + Vg.
From (7) and (22), we have,

szMSzS + ngQZQ <yV< ng@ze + szst. 37

Further, we see that

V< — 2" Wz + 27 Wigzg — 2 Wozg, (38)
< = Anin(Ws) [125]% + [1Wooll |12l 126
< —Amin(Wo) [1za]> - (39)

Suppose that we choose positive constants ¢y, k., ky,, kr such
that

2
ky > -, (40)

m

4||W59||2
Amin (Wo) > ————— 41
( 0) /\min (Ws) ( )
we have V to be negative definite ensuring the equilibrium of
the closed-loop system to be asymptotically stable. ]
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