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I. INTRODUCTION

This work provides additional derivations and technical
proofs related to [1] and is considered supplementary material.

II. PRELIMINARIES

The translational dynamics of a quadrotor can be expressed
as

mẍq = −mge3 + fRWB e3 (1)

where m is the mass of the vehicle, g is gravity, and f is the
net thrust. Further, the angular dynamics are given by

ṘWB = RWB Ω̂ (2)
IΩ̇ + Ω× IΩ = M (3)

where Ω ∈ R3 is the angular velocity of the robot in the body
frame, I is the inertial tensor, M ∈ R3 is the control moments,
and ·̂ : R3 7→ so(3) is defined such that âb = a× b.

Let

fdes = m
(
ge3 + J−1 (kxes + kvės + s̈des) + ˙J−1ṡ

)
(4)

where
es = sdes − s, ės = ṡdes − ṡ

are the position and velocity errors in the image coordinates,
and kx and kv are positive gains. Then, let the thrust be

f = fdes ·RWB e3 (5)

and the attitude controller be as defined in [2], the system
defined by eq. (1) and eq. (3) is exponentially stable.

III. STABILITY OF THE ANGULAR DYNAMICS

Following the treatment in [3], the Lyapunov candidate is

VR =
1

2
eΩ · IeΩ + kRΨ (R,Rd) + c2eR · eΩ, (6)

with c2 being a positive scalar, such that,

zTθMθzθ ≤ VR ≤ zTθMΘzθ, (7)

V̇R ≤ −zTθWθzθ, (8)

where zθ = [‖eR‖ , ‖eΩ‖]T , and Mθ,MΘ, and Wθ are positive
definite. This in turn guarantees the asymptotic staibility of the
attitude dynamics.
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IV. STABILITY OF TRANSLATIONAL DYNAMICS

The velocity of the image features is given by

ṡ =
∂Γ
(
PV1
)

∂PV1
ṖV1 .

Since
ṖV1 = −RVCRCW ẋq,

we can express the image feature velocities in terms of the
robot velocity in the inertial frame and the point PV1

ṡ = −
∂Γ
(
PV1
)

∂PV1
RVCR

C
W ẋq ≡ J ẋq. (9)

Using (9), the acceleration of the robot can be expressed in
terms of J , s, and their derivatives

m
(
J−1s̈ + ˙J−1ṡ

)
= fRWB e3 −mge3. (10)

Rearranging, the dynamics of the image features are

s̈ =
1

m
J
(
fRWB e3 −mge3 −m ˙J−1ṡ

)
. (11)

Using (9), we can determine the image errors

ës = s̈des −
1

m
J
(
fRWB e3 −mge3 −m ˙J−1ṡ

)
, (12)

so that

mës = ms̈des − fJRWB e3 + Jmge3 +mJ ˙J−1ṡ. (13)

Defining

X = J
f

eT3 R
T
c R
W
B e3

(
Rce3 −

(
eT3 R

T
c R
W
B e3

)
RWB e3

)
, (14)

the error dynamics become

mës =ms̈des − J
(

f

eT3 R
T
c R
W
B e3

Rce3

)
+ X

+ Jmge3 +mJ ˙J−1ṡ.

(15)

Next, let
f = fdes ·RWB e3, (16)

and the commanded attitude be defined by

Rce3 =
fdes
‖fdes‖

. (17)



Then, from the previous two equations, we have

f = ‖fdes‖ eT3 R
T
c R
W
B e3. (18)

Substituting this into (15) and using fdes, we have

mës =ms̈des − J
(
‖fdes‖ eT3 R

T
c R
W
B e3

eT3 R
T
c R
W
B e3

Rce3

)
+ X

+ Jmge3 +mJ ˙J−1ṡ

=ms̈des − J (‖fdes‖Rce3) + X

+ Jmge3 +mJ ˙J−1ṡ

=ms̈des − Jfdes + X + Jmge3 +mJ ˙J−1ṡ,

(19)

From eq. (4) the error equation finally becomes

mës = −kxes − kvės + X. (20)

Proof: We use the Lyapunov candidate from [3]

Vs =
1

2
kx ‖es‖2 +

1

2
m ‖ės‖2 + c1es · ės. (21)

Now, let zs = [ ‖es‖ , ‖ės‖ ]
T , then it follows that the

Lyapunov function Vv is bounded as

zTsMszs ≤ Vv ≤ zTsMSzs, (22)

where Ms,MS ∈ R2×2 are defined as,

Ms =
1

2

[
Kp −c1
−c1 m

]
, MS =

1

2

[
Kp c1
c1 m

]
. (23)

Then,

V̇s = kx (ės · es) +m (ës · ės) + c1 (es · ës + ės · ės) , (24)

and incorporating (20),

V̇s =
c1kx
m
‖es‖2 + (kv − c1) ‖ės‖2

+c1
Kv

m (es · ės) + X ·
(
c1
mes + ės

)
. (25)

Now, we establish a bound on X. From (14),

X = J
f

eT3 R
T
c Re3

((
eT2 R

T
c Re3

)
Re3 −Rce3

)
‖X‖ ≤ ‖J‖

∥∥∥∥‖fdes‖Rce3 ·Re3

Rce3 ·Re3

∥∥∥∥ ‖eR‖
≤ ‖J‖ ‖fdes‖ ‖eR‖

≤ ‖J‖m
∥∥∥ge3 + J (kxes + kvės + s̈des) + ˙J−1ṡ

∥∥∥ ‖eR‖
≤ (k′x ‖es‖+ k′v ‖ės‖+B) ‖eR‖ ,

(26)

where k′x, k
′
v, B are as defined as

k′x = m ‖J‖ ‖J‖ kx, (27)

k′v = m
(
‖J‖ ‖J‖ kv +

∥∥∥ ˙J−1
∥∥∥) , (28)

B = m ‖J‖
(
g + ‖J‖ ‖s̈des‖+

∥∥∥ ˙J−1
∥∥∥ ‖ṡdes‖) , (29)

and from [3], 0 ≤ ‖eR‖ ≤ 1.

Next we will show that there exists positive constants
γ1, γ2, γ3 s.t., ‖J‖ ≤ γ1,

∥∥J−1
∥∥ ≤ γ2, and

∥∥∥ ˙J−1
∥∥∥ ≤ γ3.

Since Γ is smooth (we only require C2 here), J is smooth on
the closed set S. This implies J is bounded on S, i.e., ∃γ1 > 0,
s.t. ‖J‖ < γ1. Next, since J is smooth and nonsingular on S,
the inverse is well defined and is smooth on S, which implies
J−1 is bounded on S, i.e., ∃γ2 > 0, s.t.

∥∥J−1
∥∥ < γ2. Next,

observe that d
dtJ
−1(xq) = ∂

∂xq
J−1(xq)ẋq is a composition of

smooth functions on S, implying that it is bounded on S, i.e.,
∃γ3 > 0, s.t.

∥∥∥ ˙J−1
∥∥∥ < γ3.

Then, similar to [4], we can express V̇v as

V̇s =
c1kx
m
‖es‖2 + (kv − c1) ‖ės‖2

+c1
Kv

m (es · ės) + X ·
(
c1
mes + ės

)
≤ − [ ‖es‖ ‖ės‖ ]Ws1

[
‖es‖
‖ės‖

]
+ k′p ‖es‖ ‖eR‖

(c1
m
‖es‖+ ‖ės‖

)
+ k′v ‖ės‖ ‖eR‖

(c1
m
‖es‖+ ‖ės‖

)
+B ‖eR‖

(c1
m
‖es‖+ ‖ės‖

)
.

This expression can be written as,

V̇s ≤ −zTsWszs + zTsWsθzθ, (30)

where Ws is defined in eq. (33).

Ws1 =

[
c1kx
m

c1kv
2m

c1kv
2mq

kv − c1

]
,Wsθ =

[
c1
mB 0
B 0

]
, (31)

Ws2 =

[
c1αk

′
x

m
α
2

(
c1
mk
′
v + k′x

)
α
2

(
c1
mk
′
v + k′x

)
αk′v

]
, (32)

Ws = Ws1 −Ws2 . (33)

Since Ws = (Ws)
T and Ws ∈ R2×2, it is sufficient to show

that det(Ws) > 0 and Ws(1, 1) > 0 in order to claim that
Ws > 0. Then, assuming (1− αγ1γ2m) > 0, we have w11 >
0. This is reasonable since α is a functional on the attitude
error such that α ∈ [0, 1]. Thus, this assumption is simply a
bound on the attitude error. The determinant can be expressed
as a quadratic function of kv such that

det(Ws) = β0 + β1kv + β2k
2
v, (34)

and βi is a function of c1, kx, γ1, γ2, γ3, and m. The critical
point of the quadratic occurs when

kv =
kxm

c1
+

kxm+ αc1γ1γ3

c1 (1− αγ1γ2m)
, (35)

and has a value of

det(Ws) =
kx (1− αγ1γ2m)

(
kxm− c21

)
m

. (36)

In both equations, since (1− αγ1γ2m) > 0, the eq. (35) is
positive, eq. (36) is positive and Ws > 0.



V. STABILITY OF THE UNDERACTUATED SYSTEM

Now, we consider the combined Lyapunov candidate for
the translational and rotational error dynamics, V = Vs + VR.
From (7) and (22), we have,

zTsMszs + zTθMθzθ ≤ V ≤ zTθMΘzθ + zTsMSzs. (37)

Further, we see that

V̇ ≤ − zTsWszs + zTsWsθzθ − zTθWθzθ, (38)

≤− λmin(Ws) ‖zs‖2 + ‖Wvθ‖ ‖zs‖ ‖zθ‖
≤ −λmin(Wθ) ‖zθ‖2 . (39)

Suppose that we choose positive constants c1, kx, kv , kR such
that

kx >
c21
m
, (40)

λmin (Wθ) >
4‖Wsθ‖2

λmin (Ws)
(41)

we have V̇ to be negative definite ensuring the equilibrium of
the closed-loop system to be asymptotically stable.
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